Regional Traffic Timing Plan Optimization Based on Improved Particle Swarm Algorithm

نویسندگان

  • Zhongyu Li
  • Bing Li
  • Keli Chen
  • Tao Yang
  • Honge Li
چکیده

The modern traffic control timing plan aims at raising transportation efficiency of vehicles by making full use of existing road resources. So we built a region traffic control model; its performance of model is measured by minimum average travel time of vehicles, its average delay model for single crossroad is derived from the revised HCM2000; and then it is transformed into objective function of optimization. To enhance the global and local searching ability, the improved exponential inertia weight factor is taken for the particle swarm algorithm. So basing MATLAB simulation tool, we calculated timing plan on under-saturation traffic flow condition and saturation traffic flow condition by the classic particles swarm optimization algorithm and improved particle swarm algorithm respectively. The simulation results show that the improved particle swarm algorithm can effectively avoid that the particles fall into local optimal solution; at the same time, the improved algorithm can reasonably distribute green signal time for every phase, the timing plan can effectively shorten average vehicle delay time and improve the transportation efficiency of road.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand

Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Cross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness

This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...

متن کامل

Load Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm

The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...

متن کامل

Modified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks)

Nowadays, traffic congestion is a big problem in metropolises all around the world. Traffic problems rise with the rise of population and slow growth of urban transportation systems. Car accidents or population concentration in particular places due to urban events can cause traffic congestions. Such traffic problems require the direct involvement of the traffic police, and it is urgent for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016